Home » Energy » Missouri’s Major Power Outages

Missouri’s Major Power Outages


For several posts I have been reporting on the bulk power grid in the United States. The Grid, as I have been calling it, delivers high voltage electricity from generating stations to local distributors. The local distributors step the voltage down and deliver the electricity to individual customers. Ameren, for instance, claims to own 7,500 miles of transmission lines (Ameren, undated), while Great Plains Energy (parent of Kansas City Power & Light) claims to own 3,600 miles (Westar & Great Plains Energy, 2018).

In the past, relatively small problems at specific locations on The Grid have cause cascading failures that left tens of millions of customers without power. The North American Reliability Corporation (NERC) publishes an annual reliability report, in which they evaluate the kinds of problems that been related to those types of grid collapses: electricity demand, generating capacity, transmission capacity, and operating procedures. I reported on the conclusions of that report in the last 2 posts.

Missouri has not been caught-up in those grid collapses. Widespread power outages in Missouri have been caused by severe weather. Both summer and winter storms have brought down large parts of local transmission grids.

For security purposes, the U.S. Department of Energy requires utilities to file reports of electric incidents and emergencies affecting The Grid. These reports cover much of the local distribution system, as well as the bulk power system we have been discussing in previous posts. These reports are known as OE-417 reports. They include major power outages, but they also cover things like vandalism and sabotage, even if they don’t result in a loss of power to any customers. Large utilities are required to submit the reports, but smaller utilities must file only “as appropriate.” (Department of Energy, undated.)

Table 1. Data source: Inside Energy, 2014, and U.S. Department of Energy, undated.

Inside Energy, an organization that studies the reliability of The Grid, put together a database from these reports that covers the years 2000-2014 (Inside Energy, 2014). To that database, I have added the Department of Energy data for the years 2015, 2016, and 2017, creating a database that lists events from 2000-2017. I then selected only those events in which the area affected included “Missouri,” “St. Louis,” or “Kansas City.” It is as comprehensive a database of events affecting Missouri as I can put together, though given the limits in the reporting requirements, it is not completely comprehensive. It probably catches all large power outages, but may not capture some of the smaller ones.

For a widespread power outage, what is your definition of widespread? Table 1 lists the individual events, gives a brief description of the kind of event it was, and shows how many customers were affected. In reading this table, be sure to note that many of the events affected more than one state. Thus, some of the customers affected may have been in other states.

(Click on table for larger view.)

While there have been large events, none of them match the scale of the events that plunged tens of millions of customers into darkness in the Northeast. The largest event occurred in 2006, when severe summer storms caused 2,500,000 customers to lose power in the Greater St. Louis Area (including Illinois). Anybody remember that one? I sure do. While that was less than 1/10th of the number of people affected by the Great Northeast Blackout of 2003, it was a very major event!

Figure 1. Data source: Inside Energy, 2014, and U.S. Department of Energy, undated.

The table shows 30 events overall, but none prior to 2002, and none from 2003-2005. Was that really the case? I don’t know. I have previously reported on the dollar value of weather-related damage in Missouri, and while 2004 and 2005 were very low damage years, 2000, 2001, and 2003 were not (see here). Thus, one wonders if there are holes in the data. Overall, there were on average 1.67 electrical disturbances per year.

Figure 1 charts the number of disturbances per year. While there is a lot of yearly variation (the weather is always variable from year-to-year) there is a clear trend toward an increased number of outages per year.



Figure 2. Data source: Inside Energy, 2014, and U.S. Department of Energy, undated.

Figure 2 charts the number of customers affected per year. The chart is dominated by the very large event of 2006, but even if you eliminate that one year, the chart does not seem to show a clear trend toward an increased number of customers affected.

Given that damage from weather-related events in Missouri has increased over time, and that the number of outages has increased over time, one is tempted to guess that utilities have made progress in protecting at least some parts of their distribution networks from large scale outages. One can’t be sure from this data, however, it would be an interesting topic for additional research.

The Missouri State Emergency Management Agency prepared a Missouri State Hazard Mitigation Plan in July of 2013, and the analysis in that plan suggests that power outages are not inconsequential. Many essential services rely on electrical power. For instance, many of the life-support systems in hospitals require electricity, pumps that deliver drinking water run on electricity, and the refrigerators that keep our food from spoiling do, too. Further, I have reported previously on deaths caused by extreme heat waves, and some of those deaths result from the loss of air conditioning due to power outages.

The Agency estimated that total loss of electric power results in dollar damages of $126 per person affected, per day. Multiplying that by the estimated population of each county, their estimates ranged from a low of $27,355 per day in Worth County to a high of $12,5865,820 per day in St. Louis County. (Missouri State Emergency Management Agency, 2013, pp. 3.542-3.547) These are damages that could mount-up very quickly.

Thus, the electrical grid is something we all use every single day, and our very lives depend on it. It is a huge, complex, interconnected machine. Its reliability seems an issue vital to our lives and to our security.


Ameren. Undated. Ameren Facts and Figures. Viewed online 5/21/2018 at https://www.ameren.com/about/facts.

Inside Energy. 2014. Grid Disruption 00 14 Standardized. Downloaded 5/9/2018 from https://docs.google.com/spreadsheets/d/1AdxhulfM9jeqviIZihuODqk7HoS1kRUlM_afIKXAjXQ/edit#gid=595041757. This is a Google Spreadsheet linked to Data: Explore 15 Years of Power Outages. Viewed online at http://insideenergy.org/2014/08/18/data-explore-15-years-of-power-outages.

Missouri Satate Emergency Management Agency. 2013. Missouri State Hazard Mitigation Plan, July 2103. Downloaded 5/24/2018 from https://sema.dps.mo.gov/docs/programs/LRMF/mitigation/MO_Hazard_Mitigation_Plan_2013.pdf.

United States Department of Energy. Undated. Electric Disturbance Events (OE-417). Viewed online 2018-06-04 at https://www.oe.netl.doe.gov/oe417.aspx.

Westar Energy & Great Plains Energy. 2018. Merger to Form Leading Company: January 2018 Investor Update. Viewed 5/21/2018 at http://www.greatplainsenergy.com/static-files/b8b91848-48a6-4f88-8fd3-df3b59316b96.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: